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Characterization and Control of Self-motions

in Redundant Manipulators
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Abstract

The presence of redundant degrees of freedom in a manipulator structure leads to a physical

phenomenon known as a "self-motion," which is a continuous motion of the manipulator joints
that leaves the end-effector motionless. In the first part of the paper, a global manifold mapping

reformulation of manipulator kinematics is reviewed, and the inverse kinematic solution for
redundant manipulators is developed in terms of self-motion manifolds. Global characterizations

of the self-motion manifolds in terms of their number, geometry, homotopy class, and null
space are reviewed using examples. Much previous work in redundant manipulator control has
been concerned with the "redundancy resolution" problem, in which methods are developed to
determine, or "resolve," the motion of the joints in order to achieve end-effector trajectory
control while optimizing additional objective functions. Redundancy resolution problems can be

equivalently posed as the control of self-motions. In the second part of the paper, alternatives

for redundancy resolution are briefly discussed.

1. Introduction

A redundant manipulator is one that has more degrees of freedom than is the minimum number

nominally required to perform a given set of tasks. Redundancy in the manipulator structure
yields increased dexterity and versatility for performing a task due to the infinite number
of joint motions which result in the same end-effector trajectory. However, this richness of
joint motions complicates the manipulator control problem considerably. In order to take
advantage of redundancy, control schemes which effectively utilize redundancy in some useful
manner must be developed. In recent years redundant manipulators have been the subject
of considerable research, and several uses for redundancy and methods to resolve redundancy

have been suggested. Much of the research on redundant manipulators has been explicitly or
implicitly based on the Jacobian pseudo-inverse approach [1] for the utilization of redundancy

through local optimization of some criterion functional.

This paper presents a different approach to the kinematics of redundant manipulators, which
is based on a manifold mapping reformulation that stresses global, rather than local, kine-

matic analysis. Within this framework, the infinite number of redundant manipulator inverse
kinematic solutions are naturally interpreted as a finite set of "self-motion manifolds." The self-
motion manifold approach is a useful foundation for studying redundant manipulator kinemat-
ics. Additionally, redundancy resolution can be equivalently posed as the control of self-motions;
and the self-motion manifolds are useful for investigating, interpreting, and formulating both

local and global redundancy resolution techniques.

The resolution of the redundancy can be implemented by direct control of a set of self-motion

parameters, by direct control of a related set of user-defined kinematic functions, or through
the optimization of an objective function. Redundancy resolution can also be posed as a local

or global problem.
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2. Kinematics of Redundant Manipulators

A manipulator forward kinematic function, f, is a nonlinear vector function which relates a set
of n joint coordinates, 0, to a set of m end-effector coordinates:

x = f(o). (1)

One of the primary problems of practical interest in manipulator kinematics is determining the
set of solutions to the inverse kinematic function, f-l:

0 = f-l(x). (2)

For non-redundant manipulators, there is a finite and bounded set of joint angles wh'ch satisfy
(2). Each solution corresponds to a distinct manipulator pose. For redundant manllpulators,
there are an infinite number of joint angles which satisfy the inverse kinematic relation in (2).
although, as will be shown, the infinity of solutions can be grouped into a finite and bounde(tset of smooth manifolds.

Previous redundant manipulator investigations have often focused on the linearized first order
instantaneous kinematic relation between end-effector velocities and joint velocities:

,_ = J(e)O (3)

where a(o) = df(O)ldO is the m x n manipulator end-effector Jacobian matrix. When n > m,
J(0) is not uniquely invertible, and pseudo-inverse techniques [1] can be used to select a joint
velocity vector, from the infinity of possible solutions, which generates a desired end-effector

velocity vector. In the redundant manipulator literature, the inverse solution to (3) is often
referred to as the inverse kinematic solution, rather than (2).

The redundant degrees of freedom, which lead to multiply infinite solutions in (2) and (3), can
be used to perform additional tasks or optimize manipulator kinematic, dynamic, or mechanical
properties. The simplest inverse solution to (3) is based on the Jacobian pseudo-inverse:

= Jb(O) x (4)

where Jb(0) = wJT(o)[J(O)WjT(o)]-I is a weighted pseudo-inverse of the manipulator end-

effector Jacobian matrix. W is a symmetric positive definite matrix, and the solution in (4)

instantaneously minimizes the weighted quadratic form oTw-Io at configuration 0. This solu-
tion can be modified by adding a null space component to the instantaneous joint velocities:

b = a (e) + (i- ate(e) a(e))y (8)

where y is an arbitrary n x 1 vector. The term (I- Jb(0) J(0)) projects y onto the null space of
the manipulator Jacobian matrix. Physically, any motion in the null space is an instantaneous

motion of the manipulator joints which causes no motion of the end-effector. Many redundancy
resolution criteria can be developed as potential functions, and y can be the gradient of the
resolution potential function, g(0): y = aVg(O) ,where a is a scalar Other instan
redundancy resolution techni ues, includin_ ta _" ant;,-o;_,_+:A- t,,1 ,_ • . taneous

q . o s_. =r ........ ,u,, iv] nave also tmen proposecl.

The global inverse kinematic solution in (2) can be conveniently investigated by introducing
a manifold mapping reformulation of manipulator kinematics which considers the aggregate.
and thus global, action of the kinematic and inverse kinematic maps on the configuration space
manifold. This approach allows simple topological tools to be applied to the study of ma-

nipulator kinematics [2]. The following sections present an overview of the manifold mapping



reformulation and the interpretation of redundant inverse kinematic solutions in terms of self-
motion manifolds. This approach gives a natural interpretation to the solution to (2), offers

useful insight into the local redundancy resolution schemes in (4) and (5), and suggests new

approaches to redundancy resolution.

3. A Manifold Mapping Reformulation of Manipulator Kinematics

Only revolute jointed manipulators will be considered in this paper, although manipulators
constructed from other lower pair joints can be similarly treated. In order to globally analyze

manipulator kinematic functions it is useful to rephrase the forward and inverse kinematic
problems in terms of manifold mappings. From a point-wise mapping perspective, the forward

• ematic function in (1) maps a umque joint configuration, 0, to an end-effector location, x:kin " .- • • • "" " " r
x,, = f(O). The set of ,a,l'lposs,ble joint configurat,ons forms a space, termed the joint space o

configuration space, which has a simple manifold structure. Similarly, the set ot all possible
end-effector locations forms the "workspace," which also has a manifold structure.

First consider how a manipulator configuration space can be developed as a manifold. Let

Oj denote the joint rotation angle for the jth revolute joint. If the motion of the jth joint is
not limited due to mechanical stops, 0 7. can take on all values in the interval [-rr, rr]. The
identification of the two end-points of the interval, 7r and -It, yields a circle, denoted by the

symbol S a in Figure 1. The configuration space, C, of an n-revolute-jointed manipulator is a
product space formed by the n-times product of the individual joint manifolds:

C = S 1 X S 1 X "'" X S 1 = T" (6)

where T" is an n-torus, which is a compact n-dimensional manifold• Each of the circles that

make up the torus is termed a generator of the torus, and is physically equivalent to a 2r
rotation of one joint. There is a one-to-one correspondence between each point in the n-torus

configuration space manifold and a discrete manipulator configuration. For example, the 2R
planar manipulator in Figure 2a has a 2-torus configuration space shown in Figure 2b.

While the torus geometry properly captures the topology of the configuration space manifold,
there are times when other representations of the torus are useful. For example, the 2-torus

representation of the 2R manipulator configuration space can be presented as a square with
dimension 2rr by "cutting" the torus along two generators, as shown in Figure 3. The 3-torus
configuration space of a 3R manipulator can not be directly viewed in a 3-dimensional space,
but it can be presented as a cube by cutting along the 3-tori generators, as in Figure 3. These
configuration space representations are also useful for plotting trajectories and surfaces in 0-

space, and all of the "cubes" in Figures 4 and 5 represent 3-tori.

To establish the geometry of the workspace, attach a frame to the manipulator end-effector.
The manipulator's workspace manifold, W, is the set of all possible locations and orientations
of this frame as the manipulator joints are swept through all points of the configuration space.

The geometric characterization of W is more complex than the torus characterization of the
configuration space [2,4]. Briefly, the workspace has a "layered" or sheet-like structure.

The forward kinematic function can be viewed as a mapping of points from the configuration

space to the workspace. More importantly, one can consider the action of the forward kinematic
function as the global rearrangement of the configuration space manifold to produce the workspace

manifold:
f(0): C _ W. (7)

Roughly speaking, the forward kinematic map "rips" the configuration space manifold apart
into pieces; distorts each piece; and combines the distorted pieces to form W. A more detailed

description of this mapping can be found in [2,4].



4. Redundant Inverse Kinematic Solution: Self-Motion Manifolds

For non-redundant manipulators, the inverse kinematic solution (also termed a preimage)

kf-l(x) of a regular 1 end-effector location is a bounded set of discrete configurations. It is
nown [5] that a 6R manipulator with arbitrary geometry can have up to 16 inverse kinematic

solutions.

Let r = n - m be the relative degrees of redundancy. Since f is a smooth function operating

on a compact manifold, C, f-l(x) must be an r-dimensional submanifold of the configuration
space [6] if x is a regular value. The preimage submanifold may actually be divided into several
disjoint manifolds. Formally, let a redundant inverse kinematic solution be denoted as the union
of one or more disjoint r-dimensional manifolds:

n$ tltl

f-l(x) = U Mi(¢) (S)
i

where M" " .th ..... . . .
,_¢) is.the .z _r-dimenslonal mamfold m the reverse kinematic prelmage and Mi(¢) t3

Mj(¢) = v mr z _: 3. _acn oI _ne preimage manifolds can be physically interpreted as a "self-
motion," which is a continuous motion of the manipulator joints that leaves the end-effector
motionless.

Definition: Each of the disjoint r-dimensional manifolds in the inverse kinematic
preimage will be termed a self-motion manifold.

ns,n is the number of self-motions in the preimage of x (bounds on the value of nsm will be
reviewed in Section 5), and a given end-effector location may have more than one associated

distinct self-motion. The multiply disjoint self-motions are akin to the distinct poses that make
up non-redundant manipulator inverse kinematic solutions. Each Mi can be parametrized by
a set of r independent parameters, ¢ = {¢1,"', Cr}, which can be thought of as generalized
coordinates for the self-motions. For a given end-effector location there is a unique choice (up
to isomorphism) of self-motion parameters. However, the choice of the self-motion parameter
can vary in different well-defined regions of the workspace [2]. The self-motion manifolds are
best illustrated using two examples: a planar 3R manipulator (Figure 4) which is redundant
with respect to the position of its end-effector, and a 4R regional manipulator which is similar
to an "elbow" manipulator (Figure 5).

The self-motion manifolds of the 3R manipulator can be computed as follows. Let ¢, which is
the orientation of the third link relative to a fixed reference system, be the parameter describing
the internal motion of the manipulator (there are other valid, useful, and physically meaningful
choices for the self-motion parameter). For a given end-effector location, (zee, Yee), and an

arbitrary value of ¢, there are two possible sets of joint angles, {Ola, 02a, 03a} and {01b, 02b, 03b},
which can be determined by evaluating the following equations:

R2 = _xe2e + y2e + l2- 213(Xee cos¢ + ye_ sine)

a = atan2(yee - 13 sin ¢, xee - 13cos ¢)

2ll _ 2l] R2

{Ola, O2a,O3a} -- {(_ "4- r/), (_- _),(_- _- r]--_ + 71")}

{Olb,O2b, O3b} _ {(Or l _),(_r --_),(¢- Ot -_ ?7 + "[-- _r)}

1 A regular point of the map f is a discrete configuration, 0, for which f(0) is not singular (the
Jacobian of f remains full rank). A regular value is an end-effector location x = f(B) where B
is a regular point. A critical point is a configuration, B, such that f(B) is singular (the Jacobian

of f loses rank). A critical value is an end-effector location x = f(B) where B is a critical point.
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where 11,12, I3 are the lengths of links 1, 2, and 3. As ¢ is swept through its feasible range

of [-_r, 7r], equations (9) will generate two 1-dimensional manifolds in the configuration space.
These manifolds may remain separate for all values of _b, in which case there are two disjoint
self-motions, or the two branches may meet at two points (corresponding to the singularities
of the non-redundant 2R planar manipulator subchain formed by links 1 and 2), to form one
self-motion manifold. In this case, the solution in (9) becomes imaginary for some values of ¢.

Figure 4 shows the self-motion manifolds of this planar manipulator(embedded in the configu-
ration space 3-torus) for two different locations of the end-effector. The inverse image of point
1 contains two distinct self-motion manifolds, while the inverse image of point 2 contains only

one self-motion. [Note: the self-motion manifolds corresponding to point 1 are closed loops,

but appear as non-closed curves because of the cubic 3-torus representation in Figure 4.] The
two distinct self-motion manifolds in the preimage of point 1 physically correspond to "up el-
bow" and "down elbow" self-motions which are an analogous generalization of the "up elbow"
and "down elbow" configurations of a non-redundant two-link manipulator. Self-motions can

be thought of as a natural generalization of the non-redundant manipulator concept of "pose"
to redundant manipulators. In both cases, the self-motion manifolds are diffeomorphic 2 to a
circle. However, the preimage of point 1 contains a generator of the configuration space (a 27r

joint rotation) while the other preimage does not. These two self-motion manifolds are not

homotopic 3 .

Now consider the more complicated 4R manipulator in Figure 5. The kinematic parameters

of this arm (using the modified Denavit-Hartenberg convention as in [7]) are: a0 = 0; al =
a2 = r/2; a3 = --7r/2; a0 = ai = a2 = 0; a3 = a4 = l; dl = d2 = d3 = d4 = 0. Let
the self-motion parameter, ¢, be the angle between the plane containing the third and fourth
links and the vertical plane passing through joint axis 1. The following equations compute four
inverse kinematic solutions, { Ola, 02a, 03a, Oga }, {01b, 02b, 03b, 04a }, { Olc, 02c, 03c, 04b }, {Old, 02d,

03d,O4d}, given an end-effector location, x = (xee,Yee,Zee), and a value for the self-motion

parameter, _b.

Define the
link length

following variables, which are purely functions of the end-effector location and the

parameter, I.

--- Yee,

cos ¢/= z,,/R2;

cos _ = R2/R3;

cos 3' = R3/21;

= + +
sin = yMR2 =

sin_ = zee/R3; _ = atan2(zee, R2).

sin'}, = (1/2l)k/4/2 - R2; 3' = atan2(sin%cos_).

(10)

There are two unique values of 04 which satisfy the inverse kinematic function:

04a = 27; 04b = --04a
(11)

2 A smooth map f: X --* Y (where X and Y are manifolds) is a diffeomorphism if it is one-to-one

and onto, and f-l: y __, X is smooth. X and Y are diffeomorphic if such an f exists.

3 Two maps, f0: X --* Y and fl: X --* Y are homotopic if there exists a smooth map, F: X × I --*
Y such that F(x,0) = fo(X) and F(x, 1) = fl(x). In other words, f0 can be deformed to fl
through a smoothly evolving family of maps, and two self-motion manifolds are homotopic if
one can be continuously deformed into the other continuously on the surface of the configuration

space torus.



Thereare four uniquevaluesof 02 (two corresponding to each value of 04 in (12)):

02a = cos-l[sin_sin 7- cos _cos 7cos ¢] 02b = --02a

02c = cos-a[sin _ sin 7 + cos _ cos 7 cos ¢] 02a = --02e.

There are four corresponding values of 01 which can be computed as follows:

(12)

0_. = atan2 / -sin¢c°s7 -(cos_sinT+sin_cosTcos¢)]
sin 02a ' sin 02a

01c = &tan2 [ sin _ cos-y (-- co8 _ Sill _/+ sin _ cos 7 cos _)]
sin 02c ' sin 02_

Olb -- Ola + _r

Old = Olc "at-

Similarly, there are four corresponding values of 03 which can be computed as follows:

(13)

Osa =atan2 [ -c°s_sin¢ sin_c°sT+c°s_sinTc°sCJ
sin 02a ' sin 02a

03c=atan2[ cos_sin¢ sin_cosT+cos_sinTcosCJ
sin 02c ' sin 02c

03b = 03a 4- _r

Oad "= 03c 4- $r

(14)

The inverse solution is real for all values of ¢ in the range [-_r, _r]. The four distinct self-motions
of this manipulator can be generated by continuously sweeping ¢ through its 27r range for fixed
(Xee, ye,, Z**). Figure 6 shows the cubic representation of the projection of these four self-motions

onto the 01-02-03 and 02-03-04 3-tori (for the case in which l = 1.0, (x,e, Y,,, z,e) = (0.0, 1.0, 0.9)).

5. Characterizations of the Self-Motion Manifolds and the Jacobian Null Space

A more detailed study of the number, geometry, and homotopy classes of self-motion manifolds
can be found in [2,3]. Some of the relevant results are requoted here.

Theorem 1: An n-vevolute-jointed redundant manipulator can have no move self-
motions than the maximum number of inverse kinematic solutions of a non-redun-
dant manipulator of the same class. That is, for a fixed end-effector location, redun-
dant spherical, regional, and spatial manipulators with an arbitrary number of revolute
joints can respectively have as many as 2, 4, and 16 distinct self-motions.

Theorem 2: The self-motion manifolds of an n-revolute-jointed redundant manipu-
lator are diffeomorphic to T r, an r-dimensional torus.

Theorem 1 says that manipulators with arbitrary geometry have an upper bound on the number
of self-motions for a fixed end-effector location. Roughly speaking, Theorem 2 says that each

self-motion manifold is a distorted r-dimensional torus lying in the n-torus configuration space.
This result actually holds for non-redundant manipulators as well, since the inverse image must
be a 0-dimensional torus, or a point.

Self motions which are homotopic to each other form a homotopy class. The notion of a

homotopy class has previously been used in [8] to characterize different redundancy resolution
paths. While an exact bound on the possible number of self-motion homotopy classes which
exist for a given manipulator has not been rigorously determined:

Proposition 3: An n-vevolute-jointed (n > 7) spatial manipulator can have as many
as 2 (n-2) different self-motion homotopy classes.



Manic redundancy resolution techniques employ the null space of the manipulator Jacobian.
In [3] it is shown that the null space has a simple interpretation as the self-motion manifold

tangent space.

Theorem 4: The null space of the Jacobian matrix, evaluated at a particular joint

configuration,/_o, is the tangent to the self-motion manifold at 0o.

Theorem 4 is particularly useful for interpreting instantaneous redundancy resolution tech-

niques, such as (4) and (5).

6. User-Defined Kinematic Functions and the Augmented Jacobian

Locally, the m end-effector coordinates and the r self-motion parameters constitute a set of gen-
eralized coordinates for a redundant manipulator. Due to the multiplicity of self-motions, there
are multiple sets of these generalized coordinates in different subregions of the configuration

space. While x and ¢ are a valid set of generalized coordinates for control of the redundant
manipulator, _b is not always physically meaningful or the direct parameters of interest in

performing a task.

It is often expedient to define r kinematic functions ¢ = {¢1(0),¢2(0),...,¢r(0)} to reflect
some additional task that will be performed with the manipulator redundancy. Each ¢i can

e a function of the joint angles {01,...,0n} and the link geometric parameters. The user-
efined kinematic functions can, for example, be the coordinates of a point on the manipulator,
r the angle of a link with respect to a fixed reference system. However, for the set {x, ¢} to

constitute a proper set of generalized coordinates, the user-defined kinematic functions must

be expressible as independent functions of ¢: ¢ = {¢1(0(¢)),..., Cr(0(_b))}.

Let us consider an augmented task vector comprised of the end-effector coordinates and the
self-motion parameters, {x, ¢}. This new set of generalized coordinates can be instantaneously
related to the manipulator joint angles through the basic augmented Jacobian:

J] [dx/dO' (15)J¢ = de/dO

set of generalized coordinates based on the end-effector coordinates and the user-defined
kAinematic function, {x, ¢(¢)}, can be instantaneously related to the joint coordinates through

the augmented Jacobian of the form:

The augmented Jacobian will be singular whenever the basic augmented Jacobian in (15) loses
rank and/or when the matrix de�de loses rank. Let us focus on the singularities of the basic
augmented Jacobian since they are invariant to the particular selection of user-defined kinematic
functions. A singularity of the augmented Jacobian will also cause the following matrix to lose

<1rank: [j¢ jcjT JcJ_J "

Since the matrix in (17) is square, a deficiency in its rank can be determined by investigating

its determinant:

[jjT jj_]= det(jjT) " det[J_b(I- J_ J)J_] (18)
det jcjT JtbJ_



There are three conditions which lead to zero determinant in (18). The basic augmented
Jacobian will lose rank when d loses rank (condition 1). The augmented Jacobian will also lose

rank when det[J,_(I- Jfd)d_] = 0. This will occur when de is rank-deficient (condition 2).

Since (I- dtd) is the null space projection operator, the augmented Jacobian will also lose

rank when one or more rows of d¢ are orthogonal to the null space of d. If the rows of J¢ are
orthogonal to the null space of J, the the null space of J is in the null space of d¢. Therefore,

the augmented Jacobian will also lose rank when N(J)n N(J¢) # ¢, where N(J) and N(J¢)
are the null spaces of J and J,/, (condition 3).

7. Alternatives for Redundancy Resolution

There are many alternative ways to implement redundancy resolution. Redundancy resolu-

tion can be effected by direct trajectory control of the manipulator generalized coordinates,
{x(t_,¢(t)}, or the related coordinates, {x(t),¢(t)}, throughout the motion. This approach
can _e used to achieve a desirable evolution of the robot configuration while working in a n-

adaptive configuration control scheme, such as [10], or an extension of the o erationa
fined space, or to avoid workspace obstacles, kinematic singularities, or joint limits [10]. c n

method [11] can be used to directly control the m__:_..l_,__ • .... p ,. 1 space
__,1_ a ,_. -- • r.^, , . J. -. -,,_-,Vut,t_or in rne CaSK cooralnates. The
_n.e_noa ouumea m [10] atso permits mequahty constraints on the user-defined functions, $(t).
Alternatively, the equivalent joint space trajectories can be computed as a function of the spec-
ified end-effector and self-motion trajectories: O(t) = f-m(x(t), _b(t)), and joint based control

can be used to servo the manipulator along the joint trajectories. Equations (9) and (10-14)
are examples of inverse kinematic functions for redundant manipulators.

In another approach, redundancy can be used to optimize a desirable objective function. Let

g(O) denote a scalar objective function to be optimized with the redundant degrees of freedom.
The criterion for optimizing g(0) with the constraint ± = J0 is:

B0_=0 (19)

where B is an r x n matrix formed from r hnearly independent rows of (I- Jr J). Equation
(19) is the result used by Bailheul [9] in the Extended Jacobian Method. Other methods for

optimizing g(O) generally lead to Jacobian based methods, such as (4) and (5). However, by
defining ¢(0) = BOg/00, we can see that kinematic optimization can also be reformulated as a
special case of trajectory tracking.

Redundancy resolution problems can be posed as either local or global problems. In local ap-
proaches, such as (4) and (5), the objective function is instantaneously optimized• In global
approaches, a global measure of the objective function is optimized over the length of a trajec-tory.

Local methods suffer from two drawbacks, which can be illustrated by considering a redundancy
resolution problem with fixed end-effector location. The goal is to find the configuration which
maximizes an objective function. Assume that the manipulator starts with the end-effector at

the proper location, but with a configuration which does not maximize the objective funct" n.

In the null space based approach of (5), an incremental chan_e in joint angle position (w_°_h
will move the manipulator closer to the optimal configuration'_ is computed by projecting the
gradient of the objective function onto the null space. This operation is equivalent to a first
order _.radient search over the self-motion manifold. First order gradient searches are ton
to finding local, rather than global, maximum Secon,t ,1. .... ,, . , . p e

• ---, _,_¢ uuu space _ecnnlques can only
optimize over a single self-motion manifold. The true optimal configuration might be contained
in another disjoint self-motion manifold, and consequently can not be found by such a technique.
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The concept of a self-motion manifold can be useful for developing other approaches to global
redundancy resolution. Again consider the case of redundancy resolution for fixed end-effector
location. Let g(O) be the objective function. For fixed end-effector location, 0 is implicitly a
function of _b. Global redundancy resolution is then equivalent to finding:

max (rn_xg/(¢)) (i= 1,..',nsm) (20)
!

where gi(¢) is the restriction of g(¢) to the ith self-motion manifold. The local maxima and
minima of the resolution function can be found as the roots to ns,n polynomials:

dgi(g2) _ 0 (i= 1,'",nsm). (21)
de

the globally optimal solution is selected by evaluating g(¢) at each of the locally optimal roots
to equations (21). Once the optimal set of self-motion parameters has been determined, the
corresponding configuration, Ooptimat, can be computed from the inverse kinematic function.

To extend this approach to redundancy resolution along a trajectory, the polynomial equations
could be solved along the path, and the multiple trajectories compared to determine the globally

optimal one.

9. Conclusions

Self-motions are inherent in redundant manipulators, and understanding their characteriza-
tion and control is important for establishing useful redundancy resolution techniques. This

paper reviews a global manifold mapping reformulation of manipulator kinematics in which
self-motions are naturally interpreted as sub-manifolds of the configuration space. Ways to
characterize these self-motion manifolds are presented. Redundancy resolution techniques can

be naturally reformulated and reinterpreted in terms of self-motion manifolds, rather than the
Jacobian null space. This approach yields useful global insight into redundancy resolution.
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Figure 1: Revolute Joint Configuration Space Manifold
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(a) Planar 2R Manipulator (b) 2-torus Configuration Space Manifold

Figure 2: Configuration Space of a 2R Manipulator
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Figure 3: Square and Cube Representation of a 2-torus and 3-torus
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Figure 4: Self-Motion Manifolds for Two Regular Values in the Workspace of a 3R

Planar Manipulator
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Figure 5: 4R Elbow-like Regional Manipulator
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Projection onto #1-02-$3 torus
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Projection onto _2-03-64 torus

Figure 6: 4R Elbow-like Manipulator Self-Motion Manifolds
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